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circulations

Definition
Let D = (V (D),A(D)) be a digraph and A an abelian group.
A circulation in D over A is a function

f : A(D)→ A

such that∑
a∈A+(v)

f (a) =
∑

a∈A−(v)

f (a), for all v ∈ V (D),

where A+(v) (A−(v), respectively) is the set of arcs of D
leaving from v (entering into v , respectively).

We say that f is nowhere-zero if f (a) 6= 0 for every a ∈ A(D),
where 0 is the identity element of A.
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Theorem
(W. Tutte 1954)
A plane digraph is k-face-colorable if and only if it admits a
nowhere-zero circulation over Zk .

Whether a digraph admits a nowhere-zero circulation over a
given abelian group depends only on its underlying undirected
graph.

So we can speak of nowhere-zero circulations in undirected
graphs.

Four-Color-Theorem Restated:
Every planar graph admits a nowhere-zero circulation over Z4.
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integer flows

Definition
A nowhere-zero circulation f over Z in a digraph D is called a
(nowhere-zero) k-flow if

−(k − 1) ≤ f (a) ≤ k − 1, for all a ∈ A(D)

Theorem
(W. Tutte 1954)
A graph admits a k-flow if and only if it admits a nowhere-zero
circulation over Zk .

Four-Color-Theorem Again:
Every planar graph admits a 4-flow.
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Theorem
A graph admits a 2-flow if and only if its vertices all have even
degrees.

Theorem
A 2-edge-connected cubic graph admits a 3-flow if and only if
it is bipartite.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

Tutte’s 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968,
1972).

Conjecture

(The 5-flow conjecture)
Every 2-edge-connected graph admits a 5-flow.

Theorem
(The 8-flow theorem, F. Jaeger 1976)
Every 2-edge-connected graph admits a 8-flow.

Theorem
(The 6-flow theorem, P. Seymour 1981)
Every 2-edge-connected graph admits a 6-flow.
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Tutte’s 4-flow conjecture

Conjecture

(The 4-flow conjecture)
Every 2-edge-connected graph with no Petersen graph minor
admits a 4-flow.

Confirmed for cubic graphs by Robertson, Sanders, Seymour
and Thomas.

Theorem
(F. Jaeger 1979)
Every 4-edge-connected graph admits a 4-flow.
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Tutte’s 3-flow conjecture

Conjecture

(The 3-flow conjecture)
Every 4-edge-connected graph admits a 3-flow.

Theorem
(M. Kochol 2001)
The 3-flow conjecture is true if and only if every
5-edge-connected graph admits a 3-flow.
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recent breakthrough

Theorem
(C. Thomassen 2012)
Every 8-edge-connected graph admits a 3-flow.

Theorem
(L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013)
Every 6-edge-connected graph admits a 3-flow.
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motivation

A graph Γ is G -vertex-transitive if G ≤ Aut(Γ) is transitive on
the set of vertices of Γ.
Γ is vertex-transitive if it is Aut(Γ)-vertex-transitive.

Theorem
(M. E. Watkins 1969; W. Mader 1970)
Every vertex-transitive graph of valency d is d-edge-connected.

Conjecture

(Vertex-transitive version of the 3-flow conjecture)
Every vertex-transitive graph of valency at least 4 admits a
3-flow.

It suffices to prove this for vertex-transitive graphs of valency 5.
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3-flows in Cayley graphs on
nilpotent groups

Theorem
(P. Potačnik 2005)
Every Cayley graph of valency at least 4 on a finite abelian
group admits a 3-flow.

Theorem
(M. Nánásiová and M. Škoviera 2009)
Every Cayley graph of valency at least 4 on a finite nilpotent
group admits a 3-flow.

A finite group is nilpotent if it is the direct product of its Sylow
subgroups.
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an intermediate goal

Prove that every graph of valency at least 4 admitting a
solvable vertex-transitive group of automorphisms admits a
3-flow.

As before it suffices to prove this for the case of valency 5.
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symmetry of graphs

Definition
Let Γ be a graph admitting a group G as a group of
automorphisms.

If G is transitive on the set of vertices (edges, respectively) of
Γ, then Γ is called G -vertex-transitive (G -edge-transitive,
respectively).

Γ is G -arc-transitive if it is G -vertex-transitive and G is
transitive on the set of arcs of Γ, where an arc is an ordered
pair of adjacent vertices.
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result so far

Theorem
(X. Li and S. Zhou 2013-14)
Let G be a finite solvable group. Then every G-arc-transitive
graph with valency at least 4 admits a 3-flow.

• Any G -arc-transitive graph is G -vertex-transitive and
G -edge-transitive

• Any G -vertex-transitive and G -edge-transitive graph with
odd valency is G -arc-transitive

Therefore, our result is equivalent to:

Theorem
Let G be a finite solvable group. Then every
G -vertex-transitive and G-edge-transitive graph with valency at
least 4 admits a 3-flow.
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solvable groups

Definition
G ′ := [G ,G ]: derived subgroup of G , the subgroup of G
generated by all commutators x−1y−1xy , x , y ∈ G

G (0) := G , G (1) := G ′, G (i) := (G (i−1))′, i ≥ 1

G is solvable if G (n) = 1 for some n ≥ 0

The least integer n with G (n) = 1 is the derived length of G .

• Solvable groups with derived length 1 are precisely
nontrivial abelian groups.

• Subgroups and quotient groups of a solvable group are
solvable.

• Any solvable group G contains a normal abelian subgroup
N such that G/N has a smaller derived length.
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multicovers

Definition
Let Γ be a graph and P a partition of V (Γ).

Γ is a multicover of the quotient ΓP if for each pair of adjacent
P,Q ∈ P, the subgraph Γ[P,Q] of Γ induced by P ∪ Q is a
t-regular bipartite graph with bipartition {P,Q} for some
integer t ≥ 1 independent of P,Q.

Lemma
Let k ≥ 2 be an integer. If a graph admits a k-flow, then its
multicovers all admit a k-flow.
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normal quotients

Definition
Let Γ be a G -vertex-transitive graph, and let N E G .

The set PN of N-orbits on V (Γ) is a G -invariant partition of
V (Γ), called a G -normal partition of V (Γ).

Denote ΓN := ΓPN
.
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Lemma
Let Γ be a connected G -vertex-transitive graph. Let N E G be
intransitive on V (Γ). Then

(a) ΓN is G/N-vertex-transitive under the induced action of
G/N on PN ;

(b) for P,Q ∈ PN adjacent in ΓN , Γ[P,Q] is a regular
subgraph of Γ;

(c) if in addition Γ is G -arc-transitive, then ΓN is
G/N-arc-transitive and Γ is a multicover of ΓN .
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result so far

Theorem
(X. Li and S. Zhou 2013-14)
Let G be a finite solvable group. Then every G-arc-transitive
graph with valency at least 4 admits a 3-flow.

• If val = 4, then the graph has a 2-flow and hence a
3-flow.

• If val ≥ 6, then the graph is 6-edge-connected and so
admits a 3-flow by LTWZ (2013).

• It is boiled down to the case val = 5.

We prove:

Claim
If G is solvable, then every G -arc-transitive graph with valency
at least 4 and not divisible by 3 admits a 3-flow.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

result so far

Theorem
(X. Li and S. Zhou 2013-14)
Let G be a finite solvable group. Then every G-arc-transitive
graph with valency at least 4 admits a 3-flow.

• If val = 4, then the graph has a 2-flow and hence a
3-flow.

• If val ≥ 6, then the graph is 6-edge-connected and so
admits a 3-flow by LTWZ (2013).

• It is boiled down to the case val = 5.

We prove:

Claim
If G is solvable, then every G -arc-transitive graph with valency
at least 4 and not divisible by 3 admits a 3-flow.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

result so far

Theorem
(X. Li and S. Zhou 2013-14)
Let G be a finite solvable group. Then every G-arc-transitive
graph with valency at least 4 admits a 3-flow.

• If val = 4, then the graph has a 2-flow and hence a
3-flow.

• If val ≥ 6, then the graph is 6-edge-connected and so
admits a 3-flow by LTWZ (2013).

• It is boiled down to the case val = 5.

We prove:

Claim
If G is solvable, then every G -arc-transitive graph with valency
at least 4 and not divisible by 3 admits a 3-flow.
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outline of proof

• We may assume G is faithful on V (Γ). We may also
assume the graphs under consideration are connected.

• Make induction on the derived length n(G ).

• If n(G ) = 1, then G is abelian and so is regular on V (Γ).
Hence Γ is a Cayley graph on G and the result is true by
Potačnik’s result.

• Assume for some n ≥ 1 the result holds for any finite
solvable group of derived length n.

• Let G be a finite solvable group with derived length
n(G ) = n + 1.

• Let Γ be a connected G -arc-transitive graph such that
val(Γ) ≥ 4 and val(Γ) is not divisible by 3.

• If val(Γ) is even, Γ has a 2-flow and so a 3-flow.

• Assume val(Γ) ≥ 5 is odd.
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Potačnik’s result.

• Assume for some n ≥ 1 the result holds for any finite
solvable group of derived length n.

• Let G be a finite solvable group with derived length
n(G ) = n + 1.

• Let Γ be a connected G -arc-transitive graph such that
val(Γ) ≥ 4 and val(Γ) is not divisible by 3.

• If val(Γ) is even, Γ has a 2-flow and so a 3-flow.

• Assume val(Γ) ≥ 5 is odd.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

outline of proof

• We may assume G is faithful on V (Γ). We may also
assume the graphs under consideration are connected.

• Make induction on the derived length n(G ).

• If n(G ) = 1, then G is abelian and so is regular on V (Γ).
Hence Γ is a Cayley graph on G and the result is true by
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• Since G is solvable, there exists an abelian N E G such
that G/N has derived length n(G )− 1 = n.

• If N is transitive on V (Γ), then it is regular on V (Γ). So Γ
is a Cayley graph on N and admits a 3-flow by Potačnik’s
result.

• Assume N is intransitive on V (Γ).

• Then ΓN is a connected G/N-arc-transitive graph, and Γ
is a multicover of ΓN .

• val(ΓN) is a divisor of val(Γ) and so is not divisible by 3.

• If val(ΓN) = 1, then Γ is a regular bipartite graph of
valency at least two and so admits a 3-flow.
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• Assume val(ΓN) > 1.

• Then val(ΓN) ≥ 5 and every prime factor of val(ΓN) is
no less than 5.

• Since G/N is solvable of derived length n, by the
induction hypothesis, ΓN admits a 3-flow.

• Since Γ is a multicover of ΓN , Γ admits a 3-flow.

• This completes the proof.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

• Assume val(ΓN) > 1.

• Then val(ΓN) ≥ 5 and every prime factor of val(ΓN) is
no less than 5.

• Since G/N is solvable of derived length n, by the
induction hypothesis, ΓN admits a 3-flow.

• Since Γ is a multicover of ΓN , Γ admits a 3-flow.

• This completes the proof.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

• Assume val(ΓN) > 1.

• Then val(ΓN) ≥ 5 and every prime factor of val(ΓN) is
no less than 5.

• Since G/N is solvable of derived length n, by the
induction hypothesis, ΓN admits a 3-flow.

• Since Γ is a multicover of ΓN , Γ admits a 3-flow.

• This completes the proof.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

• Assume val(ΓN) > 1.

• Then val(ΓN) ≥ 5 and every prime factor of val(ΓN) is
no less than 5.

• Since G/N is solvable of derived length n, by the
induction hypothesis, ΓN admits a 3-flow.

• Since Γ is a multicover of ΓN , Γ admits a 3-flow.

• This completes the proof.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

• Assume val(ΓN) > 1.

• Then val(ΓN) ≥ 5 and every prime factor of val(ΓN) is
no less than 5.

• Since G/N is solvable of derived length n, by the
induction hypothesis, ΓN admits a 3-flow.

• Since Γ is a multicover of ΓN , Γ admits a 3-flow.

• This completes the proof.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

difficulty for vertex- but not
arc-transitive graphs

A G -vertex- but not G -arc-transitive graph Γ may not be a
multicover of its normal quotients ΓN .

In fact, in this case blocks of a normal partition are not
necessarily independent sets.

This makes a similar induction difficult.
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a conjecture on Cayley graphs

Conjecture

(Alspach and Zhang 1992)
Every Cayley graph with valency at least two admits a 4-flow.

We only need to consider the cubic case due to Jaeger’s 4-flow
theorem.

Theorem
(Alspach, Liu and Zhang 1996)
The conjecture above is true for cubic Cayley graphs on finite
solvable groups.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

a conjecture on Cayley graphs

Conjecture

(Alspach and Zhang 1992)
Every Cayley graph with valency at least two admits a 4-flow.

We only need to consider the cubic case due to Jaeger’s 4-flow
theorem.

Theorem
(Alspach, Liu and Zhang 1996)
The conjecture above is true for cubic Cayley graphs on finite
solvable groups.



3-flows in
arc-transitive

graphs

Circulations
and integer
flows

Tutte’s flow
conjectures

3-flows in
arc-transitive
graphs

Proof

Related results
and further
research

Theorem
(Nedela and Škoviera 2001)
Any counterexample must be a regular cover over a Cayley
graph on an almost simple group.

Theorem
(Potačnik 2004)
Every connected cubic graph admitting a solvable
vertex-transitive group of automorphisms admits a 4-flow or is
isomorphic to the Petersen graph.
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what we may do

One may try to prove:

Every Cayley graph of valency at least four on a finite solvable
group admits a 3-flow.

This will generalize both [Alspach, Liu and Zhang 1996] and
[Nánásiová and Škoviera 2009].
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thank you for your attention
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